ASX Release

28 April 2008

ABN

51 105 991 740

Jupiter Mines Limited

Suite 2 Level 16 Norwich House 19 Bligh Street Sydney NSW 2000 Australia

Tel: +61 2 9235 2755 Fax: +61 2 9235 2955

Contact:

Greg Durack Robert Benussi

Email:

info@jupitermines.com

For the Latest News:

www.jupitermines.com

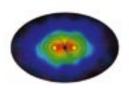
Directors/Officers

Paul Murray Alan Topp William Wang Patrick Sam Yue

Greg Durack Robert Benussi Charles Guy

Issued Capital:

Shares: 141,807,544 Unlisted Options: 29,000,000


ASX Symbol

JMS

Currently Exploring for:

- Iron Ore
- Nickel
- Uranium
- Gold

Jupiter Mines Limited Quarterly Report

Jupiter Mines Limited

March 2008 Quarterly Report

Operational Highlights

Key Projects

- Rock chip sampling and mapping confirmed the presence of hematite within the BIF horizons on the Central Yilgarn Iron Project (CYIP).
- Program of works (POW) and Environmental Management Plan submitted for drill campaign on CYIP.
- High grade iron mineralisation intersected on the Brockman Iron Project.
- Drilling commenced at Widgiemooltha Nickel Project on nickel and gold targets.
- Reconnaissance RAB drilling program completed on Leonora Gold Projects.
- Iron rights secured on Pardoo tenement.
- Option Agreements executed with Western Resources & Exploration Pty Ltd on two new project areas within Kambalda nickel district.

Corporate

- Red Rock Resources became a Substantial Holder with 8% of Jupiter.
- Strong cash position of \$4.836m at the end of the Quarter.

Overview

During the March Quarter, Jupiter Mines Limited (ASX: JMS) continued to progress exploration activities across its portfolio of iron, nickel and gold projects in Western Australia.

Further rock chip sampling and mapping was concluded at the Mt Ida prospect within the Company's Central Yilgarn Iron Project (CYIP) in Western Australia, which highlighted the presence of hematite mineralisation. The Company is currently awaiting approvals to conduct a 13,000 metre drill program on the CYIP.

In the Pilbara region, encouraging iron assay results were received from a 990 metre drill program conducted on the Brockman Iron Project in the December 2007 Quarter.

At the Widgiemooltha Nickel Project, a 2,700 metre drill program commenced to test one nickel target at Dordie Rocks South, and one nickel and two gold targets on the Widgiemooltha tenement.

On the Leonora Gold Projects, a RAB drill program was completed to test remote sensing structural lineaments for potential geochemical anomalies and mineralisation.

During the Quarter, the Company also secured the iron ore rights to a Pardoo tenement in the Pilbara, and secured Option Agreements on two new projects areas within the Kambalda nickel district.

Central Yilgarn Iron Project (CYIP)

(Mt Mason E29/495, Mt Ida E29/560, Mt Hope E30/296 & Walling Rock ELA 30/326)

The 100%-owned Central Yilgarn Iron Project ("CYIP"), is located 130km north west of Menzies in the Yilgarn region of Western Australia. The project covers a total area of 270km2 and the Company's exploration activities are focused on two key adjacent regions – the Mt Ida prospect and Mt Mason prospect.

During the Quarter, Jupiter received encouraging iron assay results from a follow-up mapping and sampling program at a group of previously-identified rock chip anomalies at the Mt Ida Prospect (Figure 1).

Jupiter completed a two week mapping and sampling program in January 2008, during which a total of 119 samples were collected from the MTIDA-1 to MTIDA-4 anomalies at Mt Ida.

This program highlighted the presence of hematite mineralisation associated with Banded Iron Formation (BIF) horizons within the targeted zones, with iron grades of up to 65.7% Fe achieved. During the Quarter, the Company reported 32 assays of over 55% Fe, including:

- MI-013 @ 62.7% Fe
- MI-033 @ 62.1% Fe
- MI-042 @ 65.7% Fe
- MI-047 @ 62.5% Fe
- MI-049 @ 62.5% FeMI-050 @ 62.6% Fe
- MI-095 @ 62.5% Fe
- MI-116 @ 65.4% Fe
- MI-119 @ 64.2% Fe

Full details of the Mt Ida mapping and sampling program are listed in Appendix 1.

The Company is also pleased to report that the recently completed ground based program has been effective in discovering several new BIF horizons, with many project areas remaining untested by geochemical sampling.

Jupiter field staff will continue sampling and mapping of the BIF horizons throughout the 2008 field season.

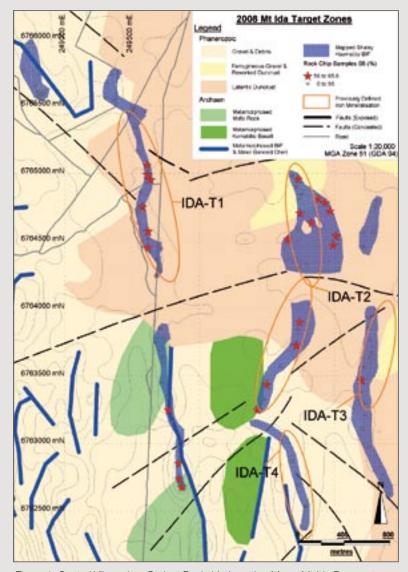


Figure 1. Central Yilgarn Iron Project Rockchip Location Map - Mt Ida Prospect

The Company's broader exploration strategy at the CYIP is to maintain an active program of field work and drill programs throughout 2008, while the Company continues to progress the environmental baseline studies for the project. This work is already in progress and represents a key priority.

Both the Program of Works (POW) and Environmental Management Plan (EMP) have been submitted for Mt Mason and Mt Ida to conduct a combined 13,000 metre RC drill program. The Company is currently awaiting approvals, but expects to commence the drilling campaign in May/June.

The drill program is designed to increase the current resource at Mt Mason (current inferred resource of 2.2 million tonnes at 60.6% Fe) and to test targets generated by the recent program of rock chip sampling at Mt Ida.

Pilbara Region Brockman Iron Project

Jupiter also received encouraging assay results from initial drilling completed at its 100% owned Brockman Iron Project, located 60km west of Tom Price in the Pilbara region of Western Australia.

Best results included:

- 7m @ 59.4% Fe (62.9% CaFe) from surface
- 7m @ 56.5% Fe (62.8% CaFe) from surface
- 5m @ 55.7% Fe (60.7% CaFe) from surface
- 7m @ 56.9% Fe (60.2% CaFe) from surface
- 9m @ 56.3% Fe (59.0% CaFe) from surface

The Brockman Iron Project is strategically located to regional mining infrastructure, with the western boundary of the Brockman tenements adjoining Rio Tinto's Brockman 3 Iron Ore Operations and located near Fortescue Metal Group's Pilbara field camp.

Jupiter completed a preliminary 2-week drilling program in November 2007, which was designed to test iron mineralisation detected from previous surface rock chip sampling. The program comprised 33 RC vertical holes totalling 990 metres, which were drilled in a series of seven traverses approximately 200 metres apart, orientated along the dip of the local geology.

The best intersection was received from hole BRC005, which returned **7 metres @ 59.4% Fe (62.9% calcined Fe or CaFe)**. The first pass program provided very encouraging results, with better intersections summarised at right:

Hole No.	From (m)	Width (m)	Fe (%)	LOI (%)	Al203 (%)	P (%)	S (%)	Si02 (%)	CaFe (%)
BRC001	0	7	51.5	9.87	6.46	0.040	0.025	8.74	56.6
BRC001	8	1	52.3	11.65	6.16	0.034	0.027	6.09	58.4
BRC002	0	2	55.8	4.91	6.22	0.036	0.016	7.53	58.5
BRC002	3	9	52.2	11.55	5.67	0.044	0.030	7.14	58.2
BRC003	0	9	53.6	5.52	6.48	0.030	0.015	8.47	56.6
BRC005	0	7	59.4	6.03	2.43	0.049	0.038	5.88	62.9
BRC013	2	7	50.0	11.3	5.35	0.023	0.013	10.9	55.7
BRC018	0	7	49.6	9.7	6.56	0.029	0.022	11.99	52.1
BRC020	0	9	56.3	4.96	5.87	0.030	0.017	7.37	59.0
BRC021	0	7	56.9	5.83	6.29	0.029	0.037	5.56	60.2
BRC022	0	5	55.7	9.05	3.44	0.042	0.039	7.32	60.7
BRC025	0	7	56.6	10.99	3.11	0.045	0.039	4.21	62.8
BRC032	0	5	49.4	9.45	6.12	0.035	0.043	12.98	54.5
BRC033	2	3	52.6	9.32	7.2	0.028	0.020	6.93	56.8

Notes:

- 1. Analyses conducted by ALS Chemex using Fusion/XRF analysis with Loss on Ignition (LOI) determined using OA-Grad5t Multi-temperature analyses
- 2. Calcined Fe (CaFe) calculated by using the formula CaFe% = ((Fe%) / (100 LOI 1,000)) * 100

A full table of sample results from the program is provided in Appendix 2, with drill hole locations shown in Appendix 3.

In light of the encouraging results from this preliminary program, Jupiter has lodged an application for Prospecting License PLA47/1314, which abuts the Brockman Iron Project tenement. Areas have been identified on this tenement that warrant follow-up exploration through field-based activities including mapping and rock chip sampling.

The Company's broader exploration strategy at the Brockman Iron Project will be reviewed once an initial program of field activities has been completed on the new Prospecting License, in conjunction with the Company's other exploration priorities at the Central Yilgarn Iron Project.

The Brockman Iron Project represents a strategic exploration opportunity for Jupiter within a world-class iron ore mining region.

Widgiemooltha Nickel Project

In April Jupiter commenced a Reverse Circulation (RC) drill program on two nickel and two gold targets at the Company's Widgiemooltha Nickel Project, shown in Figure 2.

This current program will involve approximately 2,700 metres of drilling to test one nickel target at Dordie Rocks South, and one nickel and two gold targets on the Widgiemooltha tenement.

At Dordie Rocks South, a total of six 300 metre holes are planned to test a nickel target generated from the TEM survey. The target has been modelled to be approximately 250 metres at depth, and sits on the Widgiemooltha Three Mafic-Ultramafic Contact zone, and is located approximately 1,400 metres south of Mincor Resources NL's North Dordie Mine.

At Widgiemooltha, a total of fifteen 60 metre holes are planned to test a coincident nickel and gold target in the A5 area and one gold target in the T6 area. These targets were generated through Mobile Metal Ion (MMI) soil sampling and TEM survey.

Jupiter's Widgiemooltha Nickel Project comprises approximately 200km² of ground position in the prospective southern extension of the Widgiemooltha Dome. These targets are conceptual in nature and have been generated from TEM Survey and MMI soil sampling program conducted in 2007.

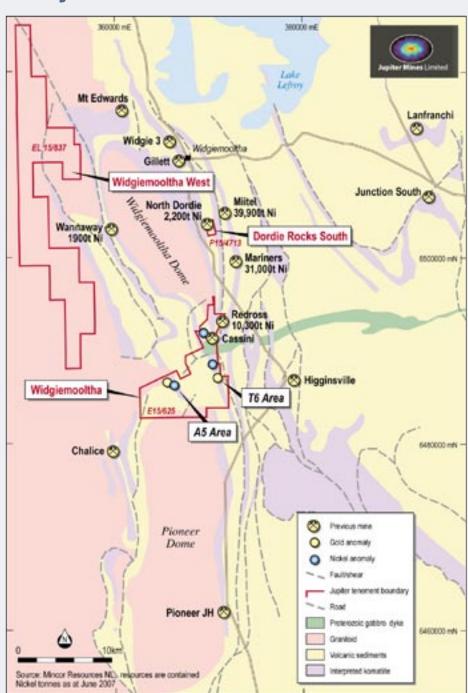


Figure 2. Widgiemooltha Location Map

Leonora Gold Project

During the Quarter, a shallow RAB drilling program was completed at the Company's Kurrajong, Grattan Well, and Desdemona Projects.

This reconnaissance shallow geochemical drill program was undertaken to test remote sensing structural lineaments for potential geochemical anomalies and mineralisation. Across the three project areas, 73 holes were completed totalling 1,531 metres. LANDSAT 7 ETM satellite data was enhanced to highlight geological structures, structural and mineral alteration zones.

In many instances, shallow RAB drilling failed to correctly test the structures, as the target depths of 50m could not be achieved due to hard ground conditions.

At the Desdemona Project, which covers the western contact of the Melita greenstone belt, the overall structure is a synclinal greenstone belt which extends over 20 kilometres in a northerly trend. Hole 08de/RAB003 at Desdemona intersected 18m @ 0.1% Ni from 6m to 24m down hole length. The geochemical anomaly is associated with a north-east trending fault zone within the contact zone of a felsic and mafic unit. Within the nickel zone, 2m @ 30 ppb Au was intercepted between 12-14 metres. Drill hole locations are shown in Appendix 4.

Klondyke Gold and Corunna Downs Base Metals Projects

No exploration is planned at Klondyke in the near future; however rehabilitation of drill sites is planned for completion in the June Quarter.

During 2007, Corunna Downs was subject to structural review by Coffey Mining to evaluate base metal potential. The program reviewed the structural controls on mineralisation (with special reference to gold, diamond and volcanogenic base metal mineralisation) within Jupiter's Marble Bar Projects.

This work resulted in the identification of six conceptual targets for further exploration, including four gold targets and two copper, lead and zinc areas.

Other **Projects**

NT Uranium Projects

The company acquired eight applications for tenements in the Northern Territory during 2007, of which six have now been granted. All eight tenements have been farmed out into a Joint Venture (JV) with NuPower Resources Ltd. The remaining two Exploration Licence applications are being progressed with a meeting currently being arranged with the Northern Land Council.

Other **Developments**

Pardoo Iron Ore Rights

During the Quarter Jupiter entered a Heads of Agreement with Shaw River Resources (ASX: SRR) and is now in the process of finalising a formal agreement to acquire the iron ore rights to tenement E45/3183.

The tenement was subject to a Heads of Agreement prior to a ballot being held, with Jupiter acquiring the Iron Rights and Shaw acquiring the Mineral Rights if the other party was successful in winning the ballot. Shaw River Resources was subsequently successful in winning the ballot.

Tenement E45/3183 is located approximately 100km north west of Port Hedland in the Pilbara region of Western Australia.

Option Agreements Over Two New Nickel Projects

In April, Jupiter entered into Option Agreements with Western Resources & Exploration Pty Ltd (WRE) to secure two new Project areas within the known nickel regions at Kambalda West and Golden Ridge East (Appendix 5).

The Option Agreements provide
Jupiter with access to a significant new
land holding in a highly prospective
nickel producing region, and will be
explored in parallel with Jupiter's nearby
Widgiemooltha Nickel Project where the
Company commenced drilling in mid April
to test nickel and gold targets.

The Kambalda West Project consists of four contiguous Exploration Licences (ELs) and two prospecting Licences (PLs) covering a total of 4,689 hectares. The ELs comprise two granted tenements, E15/874 and E15/875, and two tenements under application, E15/873 and E15/878. The PLs comprise P15/4735 and P15/4736.

The option covers a period of eight months for a payment of \$10,000 and the issue of 70,000 Jupiter Mines fully paid Ordinary Shares.

If, after the Option period, Jupiter wishes to exercise its Option to purchase the Project, a further payment of \$150,000 and issue of Jupiter Mines fully paid Ordinary Shares to the value of \$100,000 will become due.

The Project area represents an underexplored land package within a nickel producing region, and extends over a NNW strike length of 21km and straddles the Goldfields Highway 3 to 4km west of the Kambalda West town site. Structural interpretation of the project area suggests that Kambalda-type ultramafic komatites are likely to be present at depth beneath metasediments forming the core of the Merougil Syncline. These types of rocks are the main host to nickel sulphide deposits. The Golden Ridge East Project consists of one Exploration Licence, E25/229, covering an area of 589 hectares. The project is considered to have good potential for nickel and, to a lesser extent, gold. The project area is 3km east of the Golden Ridge open pit gold mine (completed) and 6km to the north of the Blair Nickel Mine currently operated by Australian Mines Limited.

The Option covers a period of eight months for a payment of \$10,000 and issue of 70,000 Jupiter Mines fully paid Ordinary Shares. If after the Option period, Jupiter wishes to exercise its Option to purchase the Project, then a further payment of \$100,000 and issue of Jupiter Mines ordinary shares to the value of \$75,000 will become due.

The Blair Nickel Mine was previously owned and operated by WMC. It was subsequently reopened by Australian Mines Limited in November 2002, and has posted quarterly production over the past two years averaging over 300 tonnes of nickel.

The Exploration Licence covered under the Option Agreement, E25/268, lies adjacent to Northern Mining Limited's (NMI) Blair North Prospect, E25/268. On 20th March 2008, NMI released an announcement to the ASX detailing results from an RC drill program at E25/268, including:

- Hole BNRC010, 25 metres downhole width (from 99m to 124m) @ 4.05g/t Au
- Hole BNRC017, 24 metres downhole width (from 36m to 60m) @ 2.16g/t Au

The results demonstrate the prospectively of the region.

Corporate

Substantial Holder

In April Red Rock Resources PLC became a Substantial Holder with 8% of the Company.

Cash Position

The Quarter closed with a cash balance of \$4.836M

Yours faithfully

Jupiter Mines Limited

you pairack

Chief Executive Officer

Competent **Person**

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Charles William Guy who is a Member of the Australian Institute of Geoscientists and a full-time employee of Jupiter Mines Limited. Charles William Guy has sufficient

is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Charles William Guy consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

The targets are conceptual in nature and are for the exploration purposes only. The targets are based on remote sensing, mapping and field work. There has been insufficient exploration and valuation to define a mineral resource and it is uncertain if future exploration will result in the determination of a mineral resource.

Tenement Status - March 2008 changes in interests in mining tenements

	Project	Tenement reference	Nature of interest (Note 2)	Interest at beginning of quarter	Interest at end of quarter
6.1 Interest in mining tenements, reduced or lapsed					
6.2 Interest in mining tenements acquired or increased	Kambalda West				
		E15/874	option	0%	Option to purchase
		E15/875	option	0%	Option to purchase
		ELA15/873	option	0%	Option to purchase
		ELA15/878	option	0%	Option to purchase
		P15/4735	option	0%	Option to purchase
		P15/4736	option	0%	Option to purchase
	Golden Ridge	E25/229	option	0%	Option to purchase
	Pardoo				
		E45/3183	Iron ore rights	0%	100% of iron ore rights in progress

Appendix 1 Central Yilgarn Iron Project Rockchip Sampling Results - Mt Ida Prospect

Sample Number	Easting	Northing	Fe ₂ O ₃	Fe %	Al ₂ 0 ₃ %	P %	S %	SiO ₂	LOI
MI-001	249674	6764244	52.4	36.7	0.23	0.02	0.006	45.5	1.08
MI-002	249688	6764236	51.4	36.0	0.26	0.057	0.005	46.7	1.13
MI-003	249704	6764283	51.1	35.7	0.54	0.069	0.027	45.6	1.8
MI-004	249706	6764324	54.2	37.9	0.54	0.06	0.015	43	1.76
MI-005	249694	6764323	53.6	37.5	0.59	0.057	0.017	43.4	1.87
MI-006	249676	6764364	51.6	36.1	0.5	0.047	0.049	43.6	2.11
MI-007	249663	6764408	Sample Lost						
MI-008	249619	6764455	82.8	57.9	4.24	0.031	0.081	6.41	5.36
MI-009	249583	6764455	59.9	41.9	3.17	0.045	0.032	31.6	4.37
MI-010	249718	6764444	76.6	53.6	1.6	0.078	0.032	18.4	2.77
MI-011	249707	6764483	71.5	50.0	6.91	0.275	0.064	8.3	11.55
MI-012	249619	6764520	78.8	55.1	5.15	0.09	0.068	10.6	4.73
MI-013	249618	6764573	89.7	62.7	1.13	0.146	0.09	3.04	5.29
MI-014	249570	6764500	55.5	38.8	0.35	0.058	0.011	41.4	2.32
MI-015	249544	6764636	50.6	35.4	0.53	0.033	0.016	46.3	2.02
MI-016	249538	6764705	54	37.8	0.36	0.015	0.07	39.8	3.95
MI-017	249531	6764733	69.9	48.9	0.46	0.035	0.011	26.9	2.39
MI-018	249577	6764755	81.4	56.9	4.12	0.024	0.049	3.43	5.76
MI-019	249520	6765348	61.2	42.8	1.04	0.117	0.023	32.2	4.84
MI-020	249530	6765458	65.4	45.7	1.36	0.122	0.036	26.6	5.99
MI-021	249596	6765466	64.4	45.0	4.21	0.022	0.128	22.9	6.92
MI-022	249507	6765477	62	43.4	0.92	0.042	0.029	32.5	3.25
MI-023	249475	6765452	51.7	36.2	1.15	0.066	0.045	43.2	3.4
MI-024	249391	6765517	62	43.4	0.81	0.064	0.023	34.6	2.09
MI-025	249359	6765545	77.1	53.9	4.05	0.317	0.062	6.02	11.15
MI-026	249298	6765568	40.5	28.3	0.15	0.024	0.013	57.6	1.21
MI-027	249312	6765668	53	37.1	0.37	0.038	0.016	44.3	1.85
MI-028	249347	6765741	53.7	37.6	0.68	0.053	0.046	42.6	2.18
MI-029	249546	6765236	49	34.3	0.84	0.12	0.021	46.6	2.79
MI-030	249537	6765169	78.6	55.0	3.83	0.451	0.041	4.87	11
MI-031	249610	6765066	81.1	56.7	2.32	0.294	0.067	3.95	11.15
MI-032	249611	6764995	88.5	61.9	3.85	0.08	0.042	1.94	5.2
MI-033	249636	6764955	88.8	62.1	3.15	0.042	0.033	2.46	5.19
MI-034	249566	6764866	66.1	46.2	0.87	0.058	0.028	28.4	4.15
MI-035	249579	6764761	76.8	53.7	4.92	0.032	0.093	5.16	6.32
MI-036	250680	6764984	34.5	24.1	0.46	0.019	0.043	62.4	1.95
MI-037	250729	6764961	87.2	61.0	1.96	0.05	0.12	4.2	5.73
MI-038	250714	6764903	75.9	53.1	4.54	0.063	0.074	7.58	11.2
MI-039	250752	6764851	77	53.9	2.8	0.16	0.09	8.19	10.4
MI-040	250743	6764805	79.2	55.4	3.68	0.284	0.04	4.73	11.2
MI-041	250742	6764710	81.9	57.3	1.63	0.084	0.091	4.89	10.7
MI-042	250826	6764638	94	65.7	1.62	0.038	0.059	1.48	2.19

Appendix 1 Central Yilgarn Iron Project Rockchip Sampling Results - Mt Ida Prospect

Sample Number	Easting	Northing	Fe ₂ 0 ₃ %	Fe %	Al ₂ 0 ₃ %	P %	S %	SiO ₂ %	LOI
MI-043	250731	6764593	72.5	50.7	7.28	0.046	0.14	10.6	7.83
MI-044	250653	6764515	82.2	57.5	2.99	0.365	0.042	4	9.36
MI-045	250664	6764491	66.5	46.5	6.4	0.133	0.078	14.75	10.15
MI-046	250650	6764436	74.4	52.0	5.4	0.043	0.1	7.88	10.75
MI-047	250879	6764816	89.4	62.5	1.55	0.045	0.031	2	6.52
MI-048	250929	6764786	87.9	61.5	2.51	0.048	0.078	3.76	4.95
MI-049	250964	6764724	89.4	62.5	2.11	0.037	0.07	2.3	5.23
MI-050	251010	6764539	89.5	62.6	1.24	0.033	0.102	3.11	5.5
MI-051	250988	6764472	87.5	61.2	3.37	0.026	0.092	2.79	5.84
MI-052	250790	6764326	48.8	34.1	28.4	0.025	0.067	2.65	17.45
MI-053	251211	6764461	79.7	55.7	2.56	0.216	0.101	4.74	11.65
MI-054	251210	6764570	74.9	52.4	3.13	0.094	0.086	10.4	10.65
MI-055	250771	6762383	61.4	42.9	11.65	0.031	0.097	12.4	12.9
MI-056	250783	6762538	58.9	41.2	13.1	0.018	0.113	13.2	13.4
MI-057	250731	6762691	53.4	37.3	10.45	0.014	0.114	21.7	11.8
MI-058	250682	6762870	66.2	46.3	7.1	0.076	0.032	14	11.2
MI-059	250603	6763030	75.8	53.0	3.54	0.104	0.047	7.88	11.6
MI-060	250420	6763143	74.7	52.2	3.53	0.017	0.077	9.14	6.71
MI-061	251317	6764796	79.4	55.5	4.43	0.158	0.078	4.8	8.45
MI-062	251305	6764755	73.7	51.5	6.84	0.31	0.067	6.89	10.85
MI-063	251285	6764566	65.3	45.7	9.99	0.158	0.105	11.35	10.95
MI-064	251234	6764437	67.1	46.9	1.36	0.216	0.03	22.3	8.27
MI-065	251252	6763936	67.1	46.9	7.2	0.052	0.148	11.9	11.9
MI-066	251255	6763857	71.3	49.9	4.84	0.532	0.066	10.5	11.05
MI-067	251260	6763772	75.8	53.0	3.1	0.355	0.065	8.79	10.5
MI-068	251271	6763675	57.3	40.1	6.98	0.191	0.136	23.2	10.5
MI-069	251267	6763634	70.8	49.5	5.3	0.285	0.056	11.65	10.6
MI-070	251265	6763592	35.2	24.6	0.92	0.045	0.03	61.2	1.63
MI-071	251220	6763566	63.8	44.6	0.94	0.128	0.036	26.3	8.22
MI-072	251197	6763472	80.5	56.3	2.25	0.086	0.062	5.17	9.86
MI-073	251192	6763382	66.5	46.5	9.14	0.097	0.068	11.05	11.65
MI-074	251226	6763305	63.7	44.6	6.9	0.103	0.062	16.4	11.25
MI-075	251188	6763318	77.2	54.0	5.02	0.118	0.061	8.45	8.2
MI-076	251194	6763292	74.7	52.2	3.42	0.092	0.075	10.15	10.6
MI-077	251224	6763201	70.1	49.0	5.3	0.064	0.066	11.7	11.35
MI-078	251204	6763111	79.5	55.6	1.6	0.065	0.086	7.67	10.5
MI-079	251253	6762976	72.8	50.9	4.74	0.42	0.083	8.74	11.6
MI-080	251351	6762771	73.7	51.5	5.53	0.108	0.13	8.31	10.75
MI-081	251399	6762638	77.4	54.1	3.1	0.021	0.048	6.16	12.6
MI-082	246303	6775016	79.2	55.4	2.14	0.016	0.095	5.31	12.25
MI-083	246219	6775037	76.9	53.8	2.67	0.009	0.1	8.79	9.72
MI-084	246025	6774968	71.6	50.1	5.27	0.026	0.122	9.12	12.65

Appendix 1 Central Yilgarn Iron Project Rockchip Sampling Results - Mt Ida Prospect

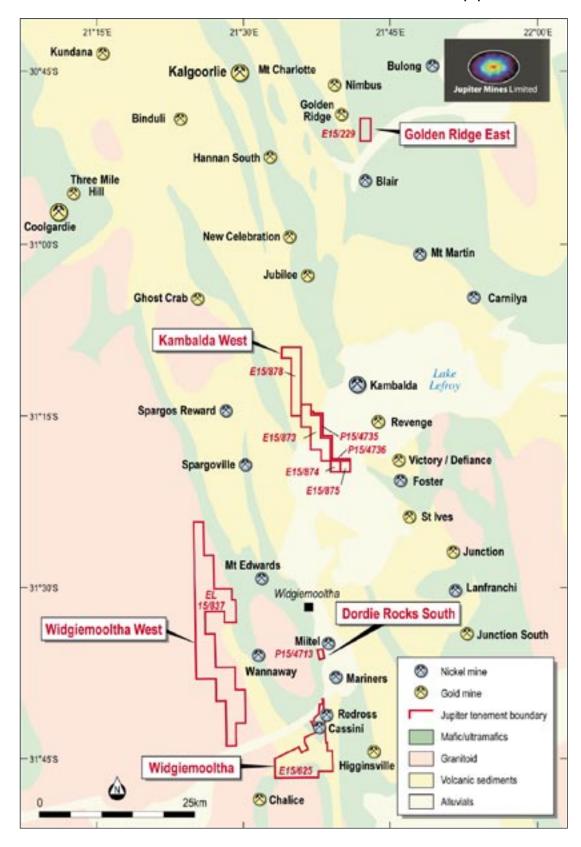
Sample Number	Easting	Northing	Fe ₂ 0 ₃	Fe %	Al ₂ O ₃	P %	S %	SiO ₂	LOI
MI-085	245913	6774957	75.3	52.7	3.17	0.03	0.098	10.25	10.65
MI-086	245844	6775028	74.9	52.4	2.47	0.018	0.134	14.45	6.45
MI-087	249726	6763642	72.5	50.7	0.67	0.17	0.027	19.35	6.84
MI-088	249733	6763592	78	54.6	0.83	0.156	0.026	13.55	6.98
MI-089	249721	6763461	50.3	35.2	0.53	0.078	0.012	44.6	4.03
MI-090	249766	6763340	58.1	40.6	0.78	0.06	0.016	37.4	3.07
MI-091	249768	6763251	81.8	57.2	2.49	0.041	0.104	9.58	5.49
MI-092	249799	6763164	60.8	42.5	0.41	0.1	0.016	34.9	3.42
MI-093	249860	6763075	45.6	31.9	0.57	0.102	0.021	49.5	3.55
MI-094	249846	6762982	52	36.4	0.46	0.049	0.05	44.5	2.5
MI-095	249844	6762856	89.5	62.6	1.68	0.03	0.05	5.06	3.38
MI-096	249848	6762739	83.9	58.7	2.02	0.039	0.077	6.88	6.75
MI-097	249866	6762678	87.1	60.9	2.78	0.041	0.072	4.86	4.71
MI-098	249708	6763697	60.6	42.4	0.44	0.059	0.015	36.1	2.51
MI-099	249671	6763756	63.1	44.1	0.25	0.087	0.009	32.7	3.45
MI-100	249711	6763854	74.4	52.0	5.09	0.021	0.071	3.93	8.24
MI-101	249738	6763787	74.1	51.8	2.11	0.092	0.043	15.05	6.81
MI-102	248805	6765575	58.1	40.6	0.3	0.014	0.021	40.3	0.76
MI-103	248841	6765593	51.6	36.1	0.18	0.007	0.01	46.1	1.73
MI-104	248855	6765613	56.4	39.4	0.06	0.051	0.008	41.9	1.25
MI-105	248815	6765569	54	37.8	0.29	0.021	0.039	42.4	2.91
MI-106	248809	6765606	52.9	37.0	0.12	0.032	0.02	42.2	4.37
MI-107	248782	6765656	52.2	36.5	0.12	0.017	0.023	46	1.25
MI-108	248799	6765697	56.4	39.4	0.17	0.006	0.011	36.4	6.69
MI-109	248803	6765734	54.2	37.9	0.5	0.006	0.027	43.2	1.72
MI-110	248752	6765969	48	33.6	0.11	0.037	0.014	50.9	0.52
MI-111	248697	6765767	57.1	39.9	0.04	0.009	0.02	37.5	5.04
MI-112	250426	6763251	80.2	56.1	2.91	0.295	0.126	4.35	10.9
MI-113	250480	6763330	77.9	54.5	4.51	0.529	0.049	4.35	11.15
MI-114	250497	6763437	82	57.4	2.22	0.258	0.139	2.98	10.95
MI-115	250596	6763571	61.5	43.0	12.95	0.036	0.124	16	7.88
MI-116	250716	6763730	93.5	65.4	1.47	0.053	0.045	2.02	2.56
MI-117	250729	6763846	78.7	55.0	4.78	0.064	0.108	9.03	6.37
MI-119	250739	6763901	91.9	64.3	2.09	0.033	0.042	2.85	2.69
MI-120	250743	6764316	60.5	42.3	22.6	0.025	0.051	3.39	8.57
MI-121	250667	6764358	77.5	54.2	3.16	0.12	0.139	5.72	11.05

Appendix 2 Drill Hole Assay Results – Brockman Iron Project

Hole No.	Depth (From)	Depth (To)	SAMPLE DESCRIPTION	Fe (%)	LOI 1000 (%)	Al ₂ 0 ₃ (%)	P (%)	S (%)	Si0 ₂ (%)
BRC001	0	1	349628	48.1	4.86	5.35	0.054	0.023	19.65
	1	2	349629	49.1	8.34	8.11	0.047	0.02	11.8
	2	3	349630	51.9	9.83	7.48	0.036	0.026	7.25
	3	4	349631	53.2	11	5.45	0.041	0.035	6.31
	4	5	349632	50.9	12.15	7.62	0.04	0.027	6.09
	5	6	349633	54.5	11.65	5	0.033	0.021	4.5
	6	7	349634	53	11.25	6.21	0.029	0.024	5.56
	7	8	349635						
	8	9	349636	52.3	11.65	6.16	0.034	0.027	6.09
	9	10	349638	51.6	11.65	4.81	0.031	0.034	8.84
BRC002	0	1	82910	56.1	4.79	6.09	0.037	0.017	7.35
	1	2	82911	55.4	5.13	6.36	0.034	0.015	7.72
	2	3	82912						
	3	4	82913	54.2	9.92	6.39	0.037	0.033	4.92
	4	5	82914	54.2	11.1	5.68	0.055	0.037	3.98
	5	6	82915	53.6	12.35	5.4	0.048	0.041	4.35
	6	7	82916	52.8	12.7	5.77	0.036	0.032	4.89
	7	8	82918	52.1	12.25	5.93	0.031	0.03	6.35
	8	9	82919	51.9	12.25	5.9	0.032	0.032	6.78
	9	10	82920	51	11.85	4.52	0.034	0.024	9.95
	10	11	82921	49.5	11.05	5.82	0.05	0.021	11.75
	11	12	82922	50.3	10.5	5.63	0.07	0.023	11.3
	12	13	82923	43.1	7.13	3.53	0.051	0.014	27.2
	13	14	82924	34.4	3.51	1.08	0.032	0.007	45.9
	14	15	82925	23.4	2.6	1.5	0.022	0.007	62.1
BRC003	0	1	82980	55	4.19	5.39	0.045	0.02	10.35
Bridded	1	2	82981	55.9	4.97	6.01	0.033	0.016	7.43
	2	3	82982	58	4.43	5.44	0.032	0.015	5.58
	3	4	82983	56.5	4.58	6.11	0.032	0.013	6.49
	4	5	82984	53.2	5.52	7.46	0.027	0.014	8.34
	5	6	82985	51.4	5.71	7.72	0.027	0.014	9.45
	6	7	82986	53.1	5.98	6.85	0.028	0.009	6.83
	7	8	82988	50	7.07	6.99	0.025	0.003	10.15
	8	9	82989	49.4	7.31	6.41	0.023	0.013	11.6
	9	10	82990	43.4	12.15	5.22	0.024	0.019	14.95
	10	11	82991	38.6	11.3	4.98	0.022	0.013	23.1
	11	12	82992	48.8	11.9	3.43	0.014	0.024	12.75
	12	13	82993	9.13	4.22	4.04	0.022	0.037	+
	13	14	82994	24.1	5.86	2.96		0.016	>70 55.8
DDC004							0.021	1	
BRC004	0	1	83040	53.9	6.21	5.99	0.03	0.038	9.04
	1	2	83041	55.3	6.22	5.02	0.034	0.048	8.14
	2	3	83042	50.7	7.02	2.01	0.041	0.022	2.02
	3	4	83043	59.7	7.93	2.01	0.041	0.032	3.93
	4	5	83044	60.8	6.32	1.62	0.042	0.032	4.7
	5	6	83045	61.4	5.83	1.74	0.044	0.03	4.23
	6	7	83046	61.4	5.88	1.12	0.068	0.027	4.8
	7	8	83051	59.6	7.16	1.3	0.072	0.026	5.84
	8	9	83052	54.3	9.96	2.88	0.077	0.035	8.81
	9	10	83053	55	7.56	2.76	0.06	0.043	10.35

Appendix 3 Drill Hole Locations – Brockman Iron Project

Hole No.	Depth	Elev	East	West	Туре	dip
BRC001	74	596	7504551	541989	RC	90
BRC002	63	599	7504536	542019	RC	90
BRC003	54	602	7504510	542044	RC	90
BRC004	57	606	7504449	542076	RC	90
BRC005	51	608	7504415	542109	RC	90
BRC006	43	613	7504379	542147	RC	90
BRC007	38	617	7504359	542195	RC	90
BRC008	26	622	7504323	542247	RC	90
BRC009	27	615	7504395	541889	RC	90
BRC010	25	633	7504256	541872	RC	90
BRC011	25	634	7504346	541883	RC	90
BRC012	33	635	7504183	541932	RC	90
BRC013	27	595	7504747	542130	RC	90
BRC014	33	602	7504720	542171	RC	90
BRC015	12	628	7504659	542324	RC	90
BRC016	18	619	7504724	542241	RC	90
BRC017	24	613	7505394	542798	RC	90
BRC018	24	602	7505422	542779	RC	90
BRC019	30	601	7505428	542749	RC	90
BRC020	30	600	7505069	542464	RC	90
BRC021	21	604	7505065	542485	RC	90
BRC022	24	607	7505037	542506	RC	90
BRC023	24	612	7505016	542542	RC	90
BRC024	22	614	7504972	542583	RC	90
BRC025	24	616	7504903	542630	RC	90
BRC026	21	630	7504753	542453	RC	90
BRC027	18	623	7504834	542399	RC	90
BRC028	15	615	7504896	542343	RC	90
BRC029	27	604	7504910	542306	RC	90
BRC030	18	626	7505137	542760	RC	90
BRC031	24	616	7505236	542676	RC	90
BRC032	18	604	7505239	542644	RC	90
BRC033	21	601	7505261	542608	RC	90


Appendix 4 Leonora Drill Hole Data

Hole Number	Eastings	Northings	Azimuth	Inclination	TD
08DE/RAB001	338790	6785660	90	60	20
08DE/RAB002	333802	6777406	110	60	32
08DE/RAB003	333785	6777418	110	60	49
08DE/RAB004	333766	6777427	110	60	26
08DE/RAB005	338801	6785658	90	60	25
08DE/RAB006	338814	6785654	90	60	29
08DE/RAB007	338840	6785655	90	60	30
08DE/RAB008	338861	6785652	90	60	35
08DE/RAB009	338880	6785655	90	60	11
08DE/RAB010	338560	6786254	90	60	13
08DE/RAB011	338580	6786260	90	60	3
08DE/RAB012	338601	6786260	90	60	6
08DE/RAB013	338622	6786259	90	60	10
08DE/RAB014	338642	6786258	90	60	11
08DE/RAB015	338662	6786260	90	60	15
08DE/RAB016	338682	6786261	90	60	11
08DE/RAB017	332387	6770667	100	60	12
08DE/RAB018	333743	6777435	110	60	32
08DE/RAB019	332408	6770668	100	60	11
08DE/RAB020	332432	6770669	100	60	41
08DE/RAB021	332454	6770666	100	60	41
08DE/RAB022	333730	6777442	110	60	34
08DE/RAB023	333708	6777454	110	60	42
08DE/RAB024	332472	6770664	100	60	8
08DE/RAB025	333052	6776995	100	60	5
08DE/RAB026	333066	6776997	100	60	2
08DE/RAB027	333085	6776987	100	60	1
08DE/RAB028	333104	6776984	100	60	7
08DE/RAB029	333124	6776979	100	60	6
08GW/RAB001	327734	6820884	45	60	18
08GW/RAB002	327710	6820860	45	60	2
08GW/RAB003	325425	6824602	45	60	25
08GW/RAB004	325408	6824583	45	60	44
08GW/RAB005	325394	6824575	45	60	20
08GW/RAB006	325362	6824547	45	60	45
08GW/RAB007	325356	6824534	45	60	20
08GW/RAB008	328293	6820277	45	60	45
08GW/RAB009	328285	6820258	45	60	44
08GW/RAB010	328277	6820242	45	60	27
08GW/RAB011	328265	6820228	45	60	39

Appendix 4 Leonora Drill Hole Data

Hole Number	Eastings	Northings	Azimuth	Inclination	TD
08GW/RAB012	328259	6820203	45	60	24
08GW/RAB013	326896	6821707	225	60	36
08GW/RAB014	326910	6821717	225	60	53
08GW/RAB015	326934	6821751	225	60	14
08GW/RAB016	326923	6821736	225	60	19
08GW/RAB017	326142	6824473	225	60	50
08GW/RAB018	326127	6824473	225	60	50
08GW/RAB019	326106	6824462	225	60	35
08GW/RAB020	326090	6824455	225	60	8
08GW/RAB021	326071	6824458	225	60	2
08GW/RAB022	326058	6824434	225	60	3
08GW/RAB023	326904	6821613	210	60	6
08GW/RAB024	326910	6821629	210	60	3
08GW/RAB025	326898	6821543	210	60	23
08GW/RAB026	326874	6821525	210	60	14
08GW/RAB027	326866	6821510	210	60	6
08GW/RAB028	326853	6821492	210	60	9
08GW/RAB029	326948	6821762	225	60	30
08KJ/RAB001	312929	6823399	225	60	20
08KJ/RAB002	312915	6823384	225	60	18
08KJ/RAB003	314054	6825529	250	60	11
08KJ/RAB004	314078	6825541	250	60	30
08KJ/RAB005	314096	6825550	250	60	9
08KJ/RAB006	314118	6825562	250	60	3
08KJ/RAB007	313312	6826767	250	60	11
08KJ/RAB008	313289	6826766	250	60	32
08KJ/RAB009	313270	6826757	255	60	2
08KJ/RAB010	313852	6825056	255	60	34
08KJ/RAB011	313835	6825049	255	60	44
08KJ/RAB012	313813	6825042	255	60	42
08KJ/RAB013	313776	6825033	255	60	31
08KJ/RAB014	312901	6823373	225	60	3
08KJ/RAB015	312887	6823362	225	60	2

Appendix 5 New Nickel Project Areas

